
需求:计算目标图像(白色区域)的面积
解决思路:二值分割+形态学处理+轮廓提取
#include <opencv2\opencv.hpp>
#include <math.h>
using namespace std;
using namespace cv;
bool verify(vector<Point> input, long min);
const int threshold_value = 80;
const int max_binary_value = 255;
int main()
{
Mat src = imread("xxx.jpg");
if (!src.data)
{
cout << "src image load failed!" << endl;
return -1;
}
Mat blur, gray, Threshold;
GaussianBlur(src, blur, Size(5, 5), 0, 0);
cvtColor(blur, gray, COLOR_BGR2GRAY);
/*图像二值化*/
threshold(gray, Threshold, threshold_value, max_binary_value, THRESH_BINARY);
/*形态学闭操作*/
Mat morph;
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
morphologyEx(Threshold, morph, MORPH_CLOSE, kernel, Point(-1, -1), 2);
/*查找轮廓*/
vector< vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours(morph, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
Mat Draw_img;
Draw_img.create(src.size(), src.type());
Draw_img = Scalar(255, 255, 255);
double sum_Area = 0.0;
int idx = 0;
for (; idx >= 0; idx = hierarchy[idx][0])
{
if (verify(contours[idx], 10)) //过滤干扰的小轮廓
{
Scalar color(rand() & 255, rand() & 255, rand() & 255);
drawContours(Draw_img, contours, idx, color, FILLED, 8, hierarchy);
sum_Area += fabs(contourArea(contours[idx]));
}
}
long nRow = gray.rows;
long nCol = gray.cols;
cout << "Sum Area:" << sum_Area << endl;
cout << "Image Area:" << nRow*nCol << endl;
//cout << "比率:" << (sum_Area) / (nRow*nCol) << endl;
imshow("Draw", Draw_img);
waitKey();
return 0;
}
bool verify(vector<Point> input, long min)
{
float area = fabs(contourArea(input));
if (area > min)
return true;
else
return false;
}
结果如图:


参考文献:
[1]https://blog.csdn.net/weicao1990/article/details/73135436
[2]https://docs.opencv.org/4.x/d7/d1b/group__imgproc__misc.html#gaa9e58d2860d4afa658ef70a9b1115576
[3]https://blog.csdn.net/weixin_39539602/article/details/116001568
@CSDN