Mat source = Cv2.ImRead("D://source.jpg");
Mat imgsrc=source;
Cv2.Resize(source, imgsrc, new OpenCvSharp.Size(800, 600), 0, 0);
//转换为灰度图像
Mat gray = new Mat(400, 600, MatType.CV_8UC3, new Scalar(255, 255, 255));
//参数:1 原图矩阵容器 2:保存图像的矩阵容器 3:颜色转换通道(很多,查手册)
Cv2.CvtColor(imgsrc, gray, ColorConversionCodes.RGB2GRAY); //转为灰度空间图像
//声明一个容器,装载改变后的图像
Mat outImage = new Mat();
Mat blur = new Mat();
OpenCvSharp.Size ksize = new OpenCvSharp.Size(3, 3);
Cv2.GaussianBlur(gray, blur, ksize, 0);
Mat edged = new Mat();
//edged = cv2.Canny(blur, 50, 100)
Cv2.Canny(blur, edged, 30, 90);
Mat s1 = new Mat(800, 600, MatType.CV_8UC3, new Scalar(0, 0, 0));
int size = 3 * 2 + 1; //要为奇数
Mat se = Cv2.GetStructuringElement(MorphShapes.Rect, new OpenCvSharp.Size(size, size), new OpenCvSharp.Point(-1, -1));
//膨胀
Cv2.Dilate(edged, s1, se, new OpenCvSharp.Point(-1, -1), 1);
Cv2.Erode(s1, s1, se, new OpenCvSharp.Point(-1, -1), 1);
//获得轮廓
OpenCvSharp.Point[][] contours;
HierarchyIndex[] hierarchly;
Cv2.FindContours(s1, out contours, out hierarchly, RetrievalModes.Tree, ContourApproximationModes.ApproxSimple, new OpenCvSharp.Point(0, 0));
//将结果画出并返回结果
Mat dst_Image = Mat.Zeros(s1.Size(), s1.Type());
Random rnd = new Random();
for (int i = 0; i < contours.Length; i++)
{
Scalar color = new Scalar(0, 0, 0);
Cv2.DrawContours(imgsrc, contours, i, color, 2, LineTypes.Link8, hierarchly);
}
///(1)转为 bitmap:
//cnt.Content = "计数:" + contours.Length;
//BitmapSource map = OpenCvSharp.WpfExtensions.BitmapSourceConverter.ToBitmapSource(imgsrc);
Cv2.ImShow("img", imgsrc);
//延时等待按键按下
Cv2.WaitKey(0);
@CSDN